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Abstract 

Contrast sensitivity is a useful measure of the ability of an observer to distinguish contrast signals from 
noise. Although usually applied to human observers, contrast sensitivity can also be defined operationally for 
individual visual neurons. In a model linear neuron consisting of a filter and noise source, this operational 
measure is a function of filter gain, noise power spectrum, signal duration, and a performance criterion. This 
definition allows one to relate the sensitivities of linear neurons at different levels in the visual pathway. 
Mathematical formulae describing these relationships are derived, and the general model is applied to the 
specific problem of relating the sensitivities of parvocellular LGN neurons and cortical simple cells in the 
primate. 
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Introduction 

Contrast sensitivity is the inverse of the luminance contrast re- 
quired by an observer to detect a particular target. It is a use- 
ful measure of the performance of visual observers. In the form 
of a contrast-sensitivity function, in which the targets are spa- 
tial or temporal sinusoids, it has been used to summarize the 
overall performance of the observer. Contrast sensitivity to 
these and other patterns have also been used to infer the struc- 
ture of the visual machinery. 

Visual neurons also may be characterized in terms of their 
contrast sensitivity. In a previous paper (Watson, 1990), it is 
noted that existing methods of measuring contrast sensitivity of 
linear visual neurons could be described in a simple mathemat- 
ical context, and this context led to a canonical expression for 
neural contrast sensitivity that involves the contrast gain of the 
neuron, the noise in the neuron, and the measurement duration. 
This paper will show how this mathematical context may be ex- 
tended to describe the relationship between sensitivities of neu- 
rons at various levels in the visual pathway. This in turn allows 
inferences regarding the role of various neurons in the contrast 
sensitivity of the human observer. 

The plan of this paper is as follows. Part 1 will develop a 
general mathematical framework in which to express the vari- 
ous components of the problem: the receptive field, the power 
spectrum of the neural noise, and the network of connections 
between neurons at various levels in the visual pathway. This 
framework leads to a general result relating the sensitivity of 
neurons at two adjacent levels. In Part 2, this result will be ap- 
plied to the specific problem of relating the sensitivity of par- 
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vocellular neurons in the lateral geniculate nucleus (LGN) to the 
simple cortical cells of primary visual cortex (VI), and thence 
to the sensitivity of human observers. A Nomenclature is pro- 
vided below for reference. 

Nomenclature 

This is a listing of the principal notation used in this paper, in 
approximate order of introduction. Where appropriate, units 
are indicated. Some general conventions adopted are that bold- 
face symbols indicate vectors, and upper-case letter function 
names indicate Fourier transforms of corresponding lower-case 

level of a neuron in visual pathway 
spatial position, deg 
time, s 
spatial frequency, cycles/deg 
temporal frequency, Hz 
cell receptive field, imp s-' 
cell impulse response, imp s '  
cell spectral receptive field (complex), imp s ' ,  
imp s 1  
cell transfer function (complex), imp s ,  imp 
s-' 
level transfer function (LTF) 
contrast gain, imp s-' 
level noise autocorrelation 
level noise power spectral density, imp2 sM2 
deg2 Hz-' 
cell noise autocorrelation 
cell noise power spectral density, imp2 s 2  deg2 
Hz-# 



cell noise power temporal spectral density, imp2 
s - ~  Hz-' 
level noise power temporal spectral density, 
imp2 s - ~  Hz-' 
contrast sensitivity 
performance parameter 
peak gain of LTF, divided by D 
LGN sample distance, deg 
density of LGN cells, deg-2 
spatial scale of LGN center Gaussian, deg 
ratio of spatial scales of LGN surround and 
center 
volume of LGN center Gaussian, imp/s 
ratio of volumes of LGN surround and center 
unit-scaled Gaussian with scale a 
Fourier transform of Xa(x) 
two-dimensional unit-scaled Gaussian with scale a 
Fourier transform of 2A0 ( x )  
LGN spatial correlation distance, deg 
conical receptive-field radial spatial frequency, 
cycles/deg 
cortical receptive-field spatial frequency, cy- 
cles/deg 
cortical receptive-field spatial scale, deg 
cortical receptive-field spatial scale, cycles 
cortical cell spatial-frequency bandwidth, oc- 
taves 
spatial variance of noise of level k contributed 
by level k - 1 
peak contrast sensitivity over an ensemble of 
cells of various u 
peak gain of cortical LTF, under adaptive gain 
assumption 

Part 1 

Linear visual networks 

A neuron is linear, with respect to some response measure, if 
that measure obeys the principles of superposition and homo- 
geneity. Superposition means that if two inputs are added, the 
response will be the sum of the individual responses. Homoge- 
neity means that intensifying the input by some amount inten- 
sifies the response by the same amount. The response measure 
considered here is the momentary impulse rate, and by that 
measure many neurons in both retina and cortex are approxi- 
mately linear, at least for inputs of moderate intensity. Even 
these neurons, however, are nonlinear when large changes in 
adapting luminance or contrast are considered. A linear anal- 
ysis is nevertheless quite powerful in providing an understand- 
ing of the response of the neuron in a stable state of adaptation. 

Many visual neurons, particularly in the earliest levels of the 
visual pathway, can be considered to lie in a serial cascade of 
layers, as shown in Fig. 1. The signal arrives at the left and 
moves to the right through the various boxes. Each box repre- 
sents a linear filter, characterized by a level transfer function 
(LTF) L, which defines the spatiotemporal filtering imposed by 
that level and which is determined by the connections and trans- 
duction properties of that level. Following each filter is a sum- 
ming point at which noise is added. Noise may also be added 
at the input (Mo). 

As a concrete example, we might consider the first level to 
be the photoreceptors, in which case MO represents noise in the 
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level 1 level 2 level 3 
Fig. 1. The early visual pathway depicted as a cascade of linear filters 
with additive noise at each level. 

image due to quantum fluctuations and possibly other sources, 
and Mi  represents noise generated within the photoreceptor. 
Level two might then represent the output of a retinal bipolar 
cell, with L2 describing the linear combination of receptors, 
and M2 representing the noise generated within the bipolar cell. 

Since noise may be generated at various points within a neu- 
ron, the noise we associate with each layer is the sum of all these 
noises, referred to the output. In a linear system, the noise can 
be referred to either input or output. We choose the latter since 
it more clearly associates the noise with the corresponding neu- 
ron or level. 

At each level the signal has two spatial dimensions, repre- 
sented by a vector x, and a time dimension t. Recording from 
a cell amounts to sampling the signal at one level at one spa- 
tial location. We shall elaborate on this point later on. The 
transfer functions Lk(u ,  w) are written as functions of two 
spatial-frequency dimensions, expressed as a vector u and a 
temporal-frequency dimension w. 

This formulation supposes that all neurons at one level are 
alike, except for their spatial location. It is therefore only ap- 
propriate for local regions of the visual field within which the 
spatial scale is roughly constant. 

Receptive fields and transfer functions 

The receptive field of a neuron, written f (x , t ) ,  describes the 
contribution of contrast at location x and time t to the response 
at time 0. It is conventional to measure spatial coordinates rel- 
ative to the center of the receptive field, so the neuron is located 
at [0,0]. In the context of linear systems theory, a more conve- 
nient representation is the impulse response, h (x, t ), which de- 
scribes the contribution of contrast at time 0 and location [0,0] 
to the response of a neuron at time t and location x, and which 
is the reflection of the receptive field, h(x, t )  = f(-x,-t). The 
impulse response (or receptive field) is the result of all of the 
filtering operations that have occurred at prior levels. The spec- 
tral receptive field F of the neuron is given by the Fourier trans- 
form of f. The transfer function H i s  the Fourier transform of 
h,  and consequently H = F* (where the asterisk indicates a 
complex conjugate). The transfer function Hk of a neuron at 
level k is equal to the product of all of the preceding level trans- 
fer functions: 

Contrast gain 

In many physiological experiments, a neuron is characterized in 
terms of the magnitude of its response to each spatiotemporal 
frequency at unit contrast. Typically, this quantity is actually 
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measured by noting the slope of the contrast-response function 
(Kaplan & Shapley, 1986), or the inverse of the contrast re- 
quired to yield a particular response, divided by that response 
(Enroth-CugeU et al., 1983). This measure has been called both 
"responsivity" (Enroth-Cugell et al., 1983) and "contrast gain" 
(Kaplan & Shapley, 1986), and we adopt the latter term here. 
In terms of the expressions introduced so far, contrast gain is 
given by the magnitude of the transfer function (or spectral re- 
ceptive field): 

Contrast gain has units of imp/s (we omit the dimensionless 
unit of contrast ' ) .  A possible source of confusion is that 
some authors have used units of "imp/s/% contrast" (Kaplan 
& Shapley, 1986; Purpura et al., 1988; Purpura et al., 1990). 
This is equivalent to our measure divided by 100. 

Noise 

The noise added at each level is modeled as a stationary random 
process with dimensions of space x and time t. Each noise may 
be characterized by an autocorrelation function, mk(x, t) ,  or 
by its Fourier transform, the power spectral density Mk(u,  w), 
which is a function of spatial and temporal frequency. The au- 
tocorrelation is a measure of the degree of correlation between 
samples of the noise process separated by a distance x and time 
t ,  while the power spectral density is a measure of the amount 
of noise at each spatiotemporal frequency. The power spectral 
density Mk(u,  w) has units of imp2 s 2  H z '  cycle2 deg2. 

The integral of the power spectrum, or equivalently the value 
of the autocorrelation at the origin, is the "average power" or 
variance of the noise process, which can be written a; (imp2 
s-2). 

The total noise at a given level k, written Nk(u,  w), is the 
result of all of the noises introduced at prior levels, each shaped 
by the filters that it must pass through. Specifically, a noise 
M ( u ,  w) passed through a filter L ( u ,  w) becomes a noise 

\ L(u,  w)I2M(u, w) (Papoulis, 1965). If the component noises 
at each level are independent and additive, then we can simply 
add their power spectra. Thus, the total noise at level k may be 
written as 

The first term is the noise added at level k,  the second is the to- 
tal noise at the previous level, shaped by the squared magnitude 
of the level transfer function. 

Together, eqns. (1) and (3) allow us to collapse the complete 
network into an equivalent single stage, as shown in Fig. 2, with 
a single filter Hk and output noise Nk. 

Fig. 2. Equivalent singlestage representation of a linear visual network. 

Sampling in space 

The network described above has an output that is a function 
of both space and time, yet when we record a response from a 
neuron, it is solely a function of time. Mathematically, the re- 
sponse of a single neuron corresponds to a sample from the 
space-time output at a particular location, which we arbitrar- 
ily set to x = [0,0]. The noise in the one-dimensional measure- 
ment is thus a stochastic process whose autocorrelation we write 
as nk( t ) ,  and whose power spectral density we write as 
Nk(w).* The latter can be obtained from Nk(u,  w )  by integrat- 
ing over the two-dimensional spatial-frequency variable u, 

The resulting power spectral density has units of imp2 s-2 
Hz-'. 

Contrast sensitivity 

Contrast sensitivity for a neuron can be defined as the inverse 
of the contrast required to produce a neural response that is dis- 
criminable from noise with some specified reliability, as a func- 
tion of the spatiotemporal frequency employed. A number of 
studies have examined contrast sensitivity of single neurons in 
the LGN and cortex (Derrington & Lennie, 1982; Derrington & 
Lennie, 1984; Hawken & Parker, 1984; Troy, 1983a).t For a 
linear neuron, contrast sensitivity is given by 

where T is the measurement duration and T is a performance 
parameter specifying the reliability of detection (Watson, 1990). 
For example, 75% correct in a two-alternative forced-choice 
task corresponds to r = 2.78. It is evident that contrast sensi- 
tivity is a ratio of contrast gain and the square root of the power 
spectrum, in other words, a dimensionless signal-to-noise ratio. 

Contrast-sensitivity transfer 

The preceding provides a framework in which to relate the sen- 
sitivity of two adjacent levels in the visual pathway. We may 
think of this as the transfer of contrast sensitivity from one level 
to the next, and it will clearly depend on the transfer of both 
gain and noise, and upon the noise added at the higher level. 
For example, assume that we know the noise and contrast sen- 
sitivity at level k - 1, and we know the level transfer function, 
and wish to determine the contrast sensitivity at level k. Tak- 
ing the ratio of contrast sensitivities at levels k and k - 1, we 
obtain 

*To avoid a profusion of symbols, I use the same symbol Nk to 
identify three different functions: the three-dimensional power spectrum 
Nk(u, w), the purely spatial power spectrum Nk(u), and the purely 
temporal power spectrum Nk(w). The identity of the function is unam- 
biguously indicated by its argument. The same convention is applied to 
functions Mi,, Lk, and Hk, and to their lower case corresponding in- 
verse Fourier transforms. 

?Some studies have defined contrast sensitivity as the inverse of the 
contrast required to produce some arbitrary criterion response, e.g. 10 
imp s-' (Enroth-Cugell & Robson, 1966; Linsenmeier et al., 1982). 
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The ratio of contrast gains is equal to the magnitude of the level 
transfer function Lk, so 

The next step is to expand the expression for the output noise 
at level k ,  which we do by combining eqns. (3) and (4): 

From eqn. (4), 

Combining eqns. (7) and (9), we arrive at a final expression for 
the relation between contrast sensitivity at two levels: 

Separable level transfer function 

Many of the following arguments are simplified if we assume 
that the LTF is separable in space and time, which also implies 
separability in spatial and temporal frequency. This assumption 
holds approximately (with some marked departures) for many 
visual neurons (Derrington & Lennie, 1982; Enroth-Cugell eta]., 
1983; Frishman et al., 1987; Hamilton et a]., 1989; Tolhurst & 
Movshon, 1975; Troy, 1983b; Troy & Enroth-Cugell, 1989). It 
is not strictly true for direction-selective simple cells, which are 
more nearly the sum of two separable functions (Hamilton 
et al., 1989; Watson & Ahumada, 1983), although in this case 
similar assumptions would lead to almost the same result. 

Separable noise power spectrum 

It is also convenient to assume separability in space and time of 
the noise power spectral density at level k - 1. This condition 
is unlikely to be precisely true. Even if all added component 
noises were uncorrelated (and hence all correlations in the out- 
put noise are due to filtering), and if all filters were separable, 
the resulting power spectrum would be a sum of separable func- 
tions, which is not necessarily separable. However, it seems 
likely that this assumption is not far from true (Mastronarde, 
1983). In that event, we write 

Recall that Nk_l (w) is the integral over u of Nkh1 (u ,  w) [eqn. 
(4)], so that 

Recall that the variance of the noise process is the integral of 
the power spectrum. For a separable process, the integral is the 
product of separate integrals, which may be thought of as the 
separate spatial and temporal variances. But since the two vari- 
ances are reciprocally related, only their product has meaning. 
Hence, eqn. (12) amounts to arbitrarily assigning unit variance 
to the spatial dimension, so that the total variance of the pro- 
cess is equal to the temporal variance. Equation (12) also im- 
plies that nk-l ([0,0]) = 1. Since n k _ ~  (x) is normalized, it may 
be directly interpreted as the correlation between cells at the 
same level separated by vector x, 

Spatial sampling of the level transfer function 

In the preceding analysis, we have treated the LTF as a contin- 
uous function. Although this is mathematically convenient, it 
is at odds with our conventional picture of the discrete synap- 
tic connections from one cell to the next. This apparent conflict 
is resolved in the following way. Each connection is made with 
a particular preceding neuron whose receptive field has a par- 
ticular location. This situation may be represented by sampling 
the continuous level impulse response (the inverse Fourier trans- 
form of the LTF) at these locations. These samples represent the 
discrete weights associated with each neural connection. 

This sampling in space will replicate the LTF in frequency, 
but this replicated LTF is multiplied by functions such as the 
contrast sensitivity and noise power spectral density of the pre- 
vious level, both of which are likely to be low-pass functions. 
Provided that the replicas are outside the passband of these 
functions, sampling will have no effect on the shape of the pre- 
dicted contrast-sensitivity function, but will introduce a scalar 
factor D equal to the sample density in samples d e g 2 .  In that 
case sampling can be accounted for in the above equations by 
replacing Lk(u )  everywhere with DLL(u), where the prime in- 
dicates the continuous version of the function. In particular, we 
write the complete separable LTF as 

Without loss of generality, we normalize the temporal and (con- 
tinuous) spatial transfer functions, so that -yD (a gain constant 
times the spatial sample density) describes the peak gain of the 
LTF. 

The result of the preceding simplifications and assumptions 
is a new expression for contrast sensitivity: 

where 

The integral of a power spectrum is the variance of a random 
process. We have assumed a separable power spectrum, so the 
variance can be regarded as the product of separate spatial and 
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temporal variances. In this sense, u : ~ _ ,  is the portion of the 
spatial variance at the output of level k  contributed by level 
k -  1. 

Part 2 

The development thus far has been abstract. Here a specific 
problem and specific forms for the various functions are intro- 
duced to show how the general principles can be applied. This 
will also allow a graphic presentation, which will help convey 
the ideas. 

The specific problem analyzed is the relation between the 
contrast sensitivity of primate parvocellular lateral geniculate 
nucleus (LGN) cells, and of the simple cells of primary visual 
cortex (Vl). This has been a subject of considerable debate. 
Parvocellular LGN cells have rather low peak contrast sensitiv- 
ity (generally less than 10) (Derrington & Lennie, 1984; Kaplan 
& Shapley, 1986), while many Vl cells have peak contrast sen- 
sitivity as high as 100 (Hawken & Parker, 1984; Hawken et a]., 
1988). Furthermore, human and primate contrast sensitivity 
may attain values above 200 (De Valois et a]., 1974). Mean- 
while, a second class of LGN cell, the magnocellular neurons, 
have peak sensitivities that are much nearer to cortical and psy- 
chophysical sensitivity. This has lead various authors to argue 
that the magnocellular system must be the substrate for psycho- 
physical sensitivity (Hawken et al., 1988; Kaplan & Shapley, 
1986). As we shall show, the error here lies in assuming that the 
sensitivity at one level must be less than or equal to the sensi- 
tivity at prior levels. In fact, it may be much greater. 

In the following sections, use is made of so-called unit Gauss- 
ians, which are defined in the Appendix. Unit Gaussians allow 
a compact notation, and are easily integrated, multiplied, con- 
volved, and Fourier transformed. 

The levels k  - 1 and k  are now being associated specifically 
with LGN and cortical levels, respectively, and subsequent sub- 
scripts (lgn & cortex) will reflect this assignment. 

Contrast sensitivity of parvocellular LGN neuron 

The two-dimensional difference-of-Gaussians (DOG) function 
provides a reasonable model of the spatial contrast-sensitivity 
function of the parvocellular LGN neuron (Derrington & Len- 
nie, 1984). We therefore adopt the following expression for the 
spatial distribution of contrast sensitivity: 

main) of the center mechanism, and r, as the ratio of peak 
gains of the surround and center Gaussians. 

Derrington and Lennie (1984) provide DOG parameters for 
a set of six primate parvocellular LGN neurons, estimated at a 
temporal frequency of 5.2 Hz. We have derived a set of mean 
parameters, by averaging the six values of the parameters v,  r,, 
and rs. The center spatial scale s was estimated by extrapolat- 
ing to the fovea (by eye) their Fig. 6, which plots center radius 
vs. eccentricity. The resulting values are v = 13.66, s = 0.025 
deg, rs = 4.98, r, = 0.65, and the corresponding "average" par- 
vocellular contrast sensitivity is shown in Fig. 3. Since all of our 
subsequent calculations are based on these averages, it should 
be acknowledged that there is considerable variability in these 
parameters. In particular, for the six cells of Derrington and 
Lennie, v ranged from 9.51-17.63. 

Geniculute temporal contrast sensitivity 

An estimate of the parvocellular temporal contrast-sensitivity 
function has also been taken from Derrington and Lennie 
(1984). Of their two estimates, we have taken the one with less 
low-frequency attenuation. This is given by 

The constant 11.5 serves to normalize the function at the fre- 
quency 5.2 Hz at which the spatial contrast sensitivities were 
measured. The contrast sensitivity at any spatiotemporal fre- 
quency is then the product of Cign(w) [eqn. (17)l and CIon(u). 
The temporal contrast-sensitivity function is pictured in Fig. 4. 

Geniculate temporal noise power spectrum 

Temporal noise power spectra for primate LGN neurons are not 
available in the literature, but Troy has published data from a 
cat Y-type LGN cell (Troy, 1983b) from which a power spec- 
trum can be estimated (Watson, 1990). as shown in Fig. 5. The 

clga(x) = v[^\s(x) - /-u2hss(x)1, (16) 

where As(u )  is a scaled unit Gaussian (with unit volume) as 
defined in the Appendix. The parameters ares, the spatial scale 
of the center Gaussian; rs, the ratio of surround spatial scale to 
center spatial scale; v, the volume of the center Gaussian; and 
r,, the ratio of volumes of surround and center unit Gaussians. 
When r, = 1, the center and surround are in balance, and the 
neuron gives no response to uniform illumination. When r, = 
0, there is no surround. The LGN spatial contrast-sensitivity 
function is the Fourier transform of eqn (16): 

Because each unit Gaussian has unit volume, its transform 
2As(u) has unit peak gain (at u = [0,0]). Thus, the parameter 
v may also be regarded as the peak gain (in the frequency do- 

Spatial Frequency (log cycles/deg) 
Fig. 3. Average spatial contrast-sensitivity function for primate foveal 
parvocellular LGN neurons, measured at 5.2 Hz. Curve is a difference 
of Gaussians [eqn. (17)l. Parameters derived from Derrington and 
Lennie (1984). 
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0 Temporal Frequency (log Hz) 
Fig. 4. Temporal contrast-sensitivity function for a primate parvo- 
cellular LGN neuron, estimated by Derrington and Lennie (1984). Curve 
is eqn. (18). 

Temporal Frequency (log Hz) 
Fig. 5. Noise power spectrum for a cat LGN neuron. The points are 
estimated from data of Troy (1983b) by the method described in Watson 
(1990). Curve is eqn. (19). 

smooth curve is a third-order polynomial (in log-log coordi- 
nates), fit by least squares, that we will use for interpolation: 

Troy found almost identical power spectra for X-type cat LGN 
cells. Indirect evidence suggests that cat and primate have sim- 
ilar LGN noise power spectra, at least at medium temporal fre- 
quencies.$ We therefore adopt eqn. (19) as the model primate 
LGN temporal noise power spectrum. 

We may hope that in the near future, empirical power spec- 
tral densities for primate LGN cells will be available, as well as 

$Working in cat, Troy (1983b) reports a mean noise amplitude plus 
two standard deviations equal to 8.6 imp/s at 5.2 Hz, while Derring- 
ton and Lennie (1984). working in primate LGN, report a correspond- 
ing figure of "about 10 imp/s9' suggesting that cat and primate are 
similar in the overall magnitude of their power spectra. 

some theoretical understanding of its form. Robson and Troy 
(1987) have noted that maintained discharges in cat retinal gan- 
glion cells show interspike interval distributions that are gamma 
distributed, with parameters of mean rate and gamma order. 
This corresponds to a power spectrum which at low frequencies 
is equal to the mean rate divided by the order, rising to a peak 
at a frequency equal to the mean rate, subsiding at high fre- 
quencies to an asymptote equal to the mean rate. Gamma or- 
ders of around 8 and 4 were observed for X and Y cells, 
respectively. 

Geniculate spatial noise power spectrum 

Recall that the noise power spectrum is the Fourier transform 
of the autocorrelation. If all noise arose as white noise at the 
input (e.g. quantum fluctuations), then the LGN noise power 
spectrum would be the squared LGN contrast gain G/-(a, w ) ,  
and the autocorrelation would be the inverse Fourier transform 
of this function. 

For lack of better information, we assume that the spatial 
autocorrelation function of the LGN noise nlgn(x) is a two- 
dimensional unit Gaussian with spatial scale p, multiplied by 
p2  to give it unit height (see Appendix). There appear to be no 
published results on the spatial correlations amongst primate 
LGN cells. The only relevant data are estimates of spatial cor- 
relations between retinal ganglion cells in the cat obtained by 
Mastronarde (1983,1989). A brief summary of those results is 
that X-cells separated by one inter-cell spacing had correlations 
of up to 40%, while those separated by two spacings had cor- 
relations of around 6%. If we assume a foveal LGN spacing of 
about 0.01 deg, then these numbers lead to a value of about 
p = 0.02 deg, and we use this value in most subsequent calcula- 
tions. Since nlgn(x) is radially symmetric, it could be expressed 
as a one-dimensional function of geniculate cell separation, but 
for consistency with notation elsewhere in this paper, we leave 
it as a two-dimensional function. In that event, Nlgn(u) [the 
Fourier transform of n/Ã£n(x) is also a Gaussian, with spatial 
scale l /p and height p : 

Cortical temporal level transfer function 

The optimal and upper cutoff temporal frequencies of Vl cells 
are typically much lower than those of LGN cells (Baker, 1990; 
Foster et al., 1985; Movshon et al., 1978; Tolhurst & Movshon, 
1975). This suggests a low-pass temporal LTF. We assume a 
simple exponential filter with time constant of 0.05 s, to yield 
a cortical temporal gain that roughly matches the modal cutoff 
of 8 Hz shown by Foster et al. (1985). The magnitude of this 
transfer function is given by 

and is illustrated in Fig. 6 .  
In what follows, we confine ourselves to predictions of spa- 

tial contrast sensitivity at the same temporal frequency at which 
the spatial LGN data were collected. The precise form of the 
cortical temporal LTF therefore has little effect on the predic- 
tions, but we include it for completeness and to emphasize that 
the formulae developed here predict the full spatio-temporal 
contrast-sensitivity function. 
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write the solution as a function of the spatial frequency u0 of 
the cortical cell: 

-0.5 0 0.5 1 1.5 2 

Temporal Frequency (log Hz) 

Fig. 6. Magnitude of cortical temporal level transfer function with time 
constant 0.05 s. Curve is eqn. (21). 

Cortical spatial level transfer function 

Unlike geniculate cells, which respond to a rather broad range 
of spatial frequencies at all orientations, most cortical neurons 
are selective for a modest band of spatial frequency and orien- 
tation. This selectivity is reasonably well-modeled by a two- 
dimensional Gaussian in spatial frequency (Hawken & Parker, 
1987; Jones & Palmer, 1987). In space this corresponds to a 
Gabor function (the product of a cosine and a two-dimensional 
Gaussian). Here a Gabor function is assumed for the spatial 
level transfer function. Note that this will result in an overall 
cell transfer function that is the product of a DOG and a Gauss- 
ian. However, in the cases we consider, this will be very close 
to a simple Gabor function. Note also that we invest no partic- 
ular significance in the use of a Gabor function; it is merely a 
convenient and plausible device for limiting the frequency and 
orientation bandwidth of the cortical cell. 

Therefore, let the spatial level transfer function be 

where un is the Gabor spatial frequency and uo = 1 uo 1 is its ra- 
dial frequency. The spatial scale is 4 = p/u0 deg, or p cycles. It 
can be interpreted as the half-width of the spatial Gaussian at 
an amplitude of 4.32Vo of maximum. Making the spatial scale 
a fixed number of cycles fixes the logarithmic bandwidth. Spe- 
cifically, if the bandwidth in octaves is b, then 

For b = I octave, p has a value of 1.409 cycles, and for b = 1.4 
octaves, p = 1.043 cycles. Generally, a value of b = 1.4 octaves 
will be used, consistent with the data of De Valois et al. (1982). 
Finally, note that the function L:or,ex(u) is normalized, as re- 
quired by eqn. (13). 

An approximation 

The full expression for contrast sensitivity [eqn. (14)] contains 
a term uZlgn that in this context will be called the geniculocor- 
tical spatial variance, that is equal to the integral of the LGN 
spatial noise power spectrum, weighted by the square of the 
spatial cortical LTF [eqn. (IS)]. The power spectrum and the 
squared LTF are both Gaussian, so their product is a Gaussian, 
and the integral thus has an exact solution (see Appendix). We 

where 

where p is the spatial scale of the cell in cycles and p is the LGN 
correlation distance [eqn. (20)J. 

Since the power spectrum is essentially a constant p 2  at low 
frequencies, while the volume of the squared LTF is ( ~ ~ / p ) ~ ,  

For p = 0.02 deg and b = 1.4 octaves, the error in this approx- 
imation is less than 0.27 log units below 32 cycles/deg. 

Case 1: No cortical noise 

We have now specified all of the components required to pre- 
dict contrast sensitivity of cortical neurons, except for the cor- 
tical noise. We first consider the case of no cortical noise 
(Mcortex = 0). Examination of eqn. (14) shows that the result- 
ing sensitivity does not depend on either sampling density D, the 
temporal LTF, or the gain factor -y: 

Figure 7 shows predictions of contrast sensitivity for individual 
neurons in the case of no cortical noise. 

Peak function 
While eqn. (27) describes the contrast sensitivity of individ- 

ual cortical neurons, it is edifying to consider a function that de- 
scribes the peak sensitivity of each neuron as a function of its 
center spatial frequency u,,. This is the upper envelope of a 
family of sensitivity functions at different spatial frequencies, 
each described by eqn. (27). Recall that the spatial LTF is nor- 
malized, so this peak function is given by 

This peak function is shown by the dashed line in Fig. 7. 
Making use of our earlier approximation [eqn. (26)] for 

us,ign, we see that peak cortical contrast sensitivity is approxi- 
mately equal to LGN contrast sensitivity, divided by spatial fre- 
quency, multiplied by the (constant) cell spatial scale in cycles, 
divided by the (constant) LGN correlation distance: 

Note that predicted cortical sensitivity rises as much as 1.4 
log units above geniculate sensitivity. This illustrates one of the 
main points of this paper: cells at one level may have a sensi- 
tivity that is much higher than that of cells at a prior level in a 
visualpathway. In the present case, it says that VI simple cells 
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Spatial Frequency (log cycles / deg) Spatial Frequency (log cycles/deg) 
Fig. 7. Predicted contrast sensitivity of cortical neurons when no noise 
is added at the cortical stage. The cortical neurons shown [thin solid Fig. 8. Peak contrast sensitivity with no cortical noise and geniculate 

lines, eqn. (27)1 have center frequencies of 2, 4, 8, 16, and 32 cycles, correlation distances p of 0.01, 0.02, 0.04,0.08, and 0.16 deg. Curves 

deg, and each has a bandwidth of 1.4 octaves ( p  = 1.043 cycles). The are eqn- (28)- Other are as in Fig' 7' 

LGN correlation distance is p = 0.02 deg. The dashed line traces the 
peak sensitivity of the collection of neurons [eqn. (28)l. The heavy solid 
line is the sensitivity of the underlying LGN neurons [eqn. (17)l. Case 2: Cortical noise 

may have much higher contrast sensitivity than their parvocel- 
lular inputs. This result is not a mystery; it is due to the linear 
spatial pooling of signals over a wide area. This pooling will be 
discussed at greater length below. 

It may be helpful to note that <~s,,~,, is the square root of the 
portion of the LGN spatial variance that is "seen" by the spa- 
tial LTF of the cortical cell. As the spatial frequency of the cor- 
tical cell is reduced, the LTF narrows, and less of the variance 
is seen. Another way of thinking about it is that at lower fre- 
quencies, the spatial pooling area is larger, and this averaging 
reduces the spatial variance and thus enhances sensitivity. 

Another observation is that predicted sensitivity grows with- 
out limit as the frequency of the cortical cell is lowered. How- 
ever, the size of foveal simple cell receptive fields is presumably 
limited. For example, Hawken et al. (1988) found no cells 
within 1.5 deg of the fovea with peak spatial frequencies below 
0.75 cycles/deg. Consequently, we are mainly concerned with 
the shape of the peak function above about 1 cycle/deg. 

Effect of geniculate correlation distance p 

The previous figure was based on a value of p = 0.02 deg for 
the LGN correlation distance. Figure 8 shows the peak function 
for various other values of p. 

A rough characterization of the result is that increasing cor- 
relation reduces sensitivity at low spatial frequencies, but en- 
hances sensitivity slightly at the highest spatial frequencies. The 
former effect is intuitive, since the greater the correlation, the 
fewer independent estimates of the signal there are to be pooled. 
The enhancement at high spatial frequencies is because no pool- 
ing is being done, and increased correlation corresponds to re- 
duced noise in a local area. 

These predictions are based on a Gaussian correlation (and 
power spectrum). Another shape for this power spectrum would 
of course alter the shape of the peak function. 

As we have seen, assuming an absence of cortical noise allows 
us to disregard several aspects of the model, such as the tem- 
poral LTF, the LGN sample density D, and the gain factor 7. 
The inclusion of cortical noise obliges us to consider these as- 
pects, about which there are few data, and therefore adds de- 
grees of freedom to the predictions. To avoid undue speculation, 
discussion will be confined to a few general results and predic- 
tions. 

Pelli (1990) has argued that, except at low spatio-temporal 
frequencies (below 4 Hz and 4 cycles/deg), psychophysical sen- 
sitivity is limited by quantum fluctuations. This would imply 
that cortical cells add little noise of their own over most of the 
frequency range. At low frequencies, he found an added neu- 
ral noise component, which would tend to lower the peak func- 
tion in this region. Although cortical noise may not be limiting 
over much of the spatio-temporal spectrum, we should never- 
theless like to understand what effects it will have when it does 
intrude. 

We have little information on the power spectrum of the 
noise added at the cortical level, Mi,{ w ) .  We therefore assume 
it has a constant density over the frequency range of interest, 
denoted by the constant Mk. 

Cortical level gain 
The absence of cortical noise completely removes any effect 

of the level gain factor 7, because both signal and noise are arn- 
plified equally by the LTF. If cortical noise is present, some as- 
sumption must be made regarding 7. Note that this gain could 
be quite different for neurons of different spatial frequencies, 
following some function y(uo), allowing an almost arbitrary 
shape for the resulting peak function (although it must always 
lie below the no-cortical noise curve, because additional noise 
can only reduce sensitivity). Empirically, some insight into this 
function might be offered by comparison of the LGN contrast 
gain at some visual field location and the contrast gain of cor- 
tical cells of various frequencies drawn from the same location. 
However, such data appear not to be available. 
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In this section, we consider the hypothesis that the gain is set 
adaptively at each spatial frequency to optimize the use of the 
available response range of each neuron. Neurons have a rather 
limited dynamic range, those in the LGN and cortex typically 
responding at less than 100 impulses/s (Sclar et al., 1990). The 
maximum response produced by our linear model neuron is 
equal to the peak contrast gain times the maximum contrast. It 
seems essential that the gain of each cortical LTF be set in such 
a way that naturally occurring contrasts will generate responses 
within the dynamic range of the cell. The little available evi- 
dence (Field, 1987) suggests that the spatial contrast amplitude 
spectrum of natural imagery is proportional to l/u. This cor- 
responds to equal energy within spectral regions of constant log 
bandwidth. Since our model cortical neurons are designed to 
have a constant log bandwidth, they will, if given equal peak 
gain, have equal expected energy in their outputs. This in turn 
means that each neuron, exposed to an ensemble of natural im- 
ages, will produce a distribution of responses with equal stan- 
dard deviation. The gain of the neuron should be set in such a 
way that the maximum response is proportional to this standard 
deviation. Therefore, to match the dynamic range of the neu- 
ron to the natural contrast distribution, the peak gains of neu- 
rons at different frequencies should be equated. We lack specific 
values for the absolute magnitude of the natural contrast power 
spectrum, so we will be content to adopt a constant cortical 
peak gain of ycortex. Then the gain factor of a neuron at spatial 
frequency uo will be 

This gain function yields a constant peak contrast gain for 
each cortical neuron (at some temporal frequency w,) by com- 
pensating for the variations in gain introduced by the LGN neu- 
ron. It may be thought of as a "de-blurring" operation applied 
to the ensemble of cortical neurons. Note also that when in- 
serted into eqn. (14), the density term D vanishes, so that for 
these predictions, as for the no-cortical-noise case, LGN spa- 
tial density plays no role. 

Figure 9 shows peak contrast sensitivities for five different 
amounts of cortical noise under the adaptive gain assumption. 
Increasing cortical noise has two effects: sensitivity is reduced 
at middle and low frequencies, and the curve becomes flatter in 
this frequency range. The flattening of the curve is explained as 
follows. Under the adaptive gain assumption, all neurons have 
the same peak gain regardless of their spatial frequency. Fur- 
thermore, we have assumed a flat cortical spatial noise spec- 
trum. Thus, as cortical noise comes to dominate the total noise, 
contrast sensitivity becomes independent of spatial frequency. 

The adaptive-gain hypothesis is but one possible conjecture 
regarding the relative gains of the neurons at different spatial 
frequencies. Other schemes may be entertained, but they can- 
not escape the constraint imposed by the limited dynamic range 
of the cortical neuron. 

Relation to physiological contrast sensitivity 

Contrast sensitivities of primate Vl cortical cells have been mea- 
sured by Hawken and Parker (1984) and Hawken et al. (1988). 
In the earlier paper, the highest sensitivities were on the order 
of 100 (in lamina IVca), while in laminae receiving input pri- 
marily from parvocellular neurons, highest sensitivities were 
around 40. In the later report, a large proportion of foveal cor- 

-0.5 0 0.5 1 1.5 2 

Spatial Frequency (log cycles/deg) 
Fig. 9. Predicted peak contrast sensitivity for cortical noise of 0, 0.1, 
1 ,  10 imp2 s-' Hz-'. Other parameters are p = 0.02 deg, T = 0.05 s, 
b = 1.4 octaves, -ya, ,,ex = 100 imp s-I, and w ,  = 6.5 Hz. The heavy line 
shows psychophysical data from a human observer. Psychophysical de- 
tails: 100 cd m 2 ,  1 octave Gabor, natural pupil, and Gaussian time 
course with 1/e width of 0.5 s (0 Hz). Physiological details: 200 cd m-2, 
1.4 octave Gabor, duration 1 s, no eye movements, 5.2 Hz, and 3 mm 
artificial pupil. 

tical cells exhibited sensitivities of between 20 and 80 (laminae 
were not indicated). Despite the large range of peak sensitivi- 
ties, and the sampling uncertainties inherent in this sort of ex- 
periment, it is clear that many Vl cells, even those presumably 
driven by parvocellular inputs, show sensitivities greater than 
that of typical parvocellular geniculate neurons. 

Comparing these physiological results with the predictions, 
a moderate amount of cortical noise (1 imp2 s 2  H z 1 )  yields 
peak sensitivities of about 2 log units, comparable to the best 
sensitivities observed for Vl cells. Furthermore, human psycho- 
physical sensitivities are quite close to Vl peak neural sensitiv- 
ities when psychophysical targets are matched to the cells' 
receptive field (Hawken & Parker, 1990), and as will be dis- 
cussed below, psychophysical thresholds are roughly consistent 
with the predictions for moderate noise. 

Relation to psychophysical contrast sensitivity 

One reason we wish to understand the contrast sensitivity of 
visual neurons is the insight it may give us into the psychophys- 
ical sensitivity of human observers. Indeed, early measurements 
of neural contrast sensitivity, rather than contrast gain, were 
made to permit comparisons of neural and psychophysical sen- 
sitivity (Derrington & Lennie, 1982,1984). We have adopted 
an operational definition of contrast sensitivity that allows us 
to make rather direct prediction of psychophysical sensitivity. 
Specifically, an observer relying on the output of a single cor- 
tical neuron, and making ideal use of the neurons response ex- 
cept for phase, would have the same contrast sensitivity as the 
neuron. Thus, we may take peak functions such as those in 
Figs. 7-9 as predictions of psychophysical contrast sensitivity. 

Figure 9 also shows one set of psychophysical contrast sen- 
sitivities collected from a human observer (Watson, 1987). Sen- 
sitivities were measured with one-octave Gabor functions with 
a mean luminance of 100 cd m 2 .  These are similar to data 
collected by others (Banks et al., 1987, 1991; Pointer & Hess, 
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1990). A detailed comparison of neural and psychophysical sen- 
sitivities is beyond the scope of this paper, but two general 
points may be made. First, the peak sensitivities predicted at 
middle frequencies are on the same order as the psychophysi- 
cal data. Thus, the parvocellular pathway, despite its low con- 
trast sensitivity at the LGN, is capable of providing the basis for 
human psychophysical contrast sensitivity. 

The second point is that at high spatial frequencies the pre- 
dicted sensitivity is much greater than the empirical sensitivity. 
The discrepancy appears larger than is likely to be accounted 
for by the various differences between the conditions of mea- 
surement for human and primate, although several of these are 
likely to account for some of the difference (see details in cap- 
tion to Fig. 9). The predicted sensitivities at the highest frequen- 
cies are quite dependent upon the estimate of the LGN center 
sizes, which we have assumed here to be 0.025 deg. However, 
this must be enlarged by a factor of two to bring the curves into 
agreement. 

Discussion 

The first purpose of this paper was to derive some general prin- 
ciples and formulae to relate the contrast sensitivities of neurons 
at different levels in a visual pathway. In general, the sensitiv- 
ity at the higher level depends upon sensitivity at the lower level, 
upon the spatio-temporal noise power spectrum at the lower 
level, upon the level transfer function relating the gains at the 
two levels, and upon the noise added at the higher level. Some 
simple equations were derived to describe these relations in a 
formal and computable way. 

A second goal was to illustrate these principles by applying 
them to the relation between contrast sensitivity of parvocellu- 
lar LGN and cortex. The resulting predictions showed that 
while LGN cells individually have low contrast sensitivity, the 
resulting cortical sensitivities are as high as measured cortical 
and psychophysical sensitivities. This is consistent with other re- 
sults suggesting that parvocellular neurons are the basis of con- 
trast sensitivity, except at the lowest spatial and temporal 
frequencies (Merigan & Eskin, 1986). 

One benefit of this analysis is that it indicates the quantities 
that govern sensitivity,and which might therefore prove valu- 
able to measure. Among the unknowns that we encountered in 
applying this analysis to LGN and cortical cells were (1) the 
temporal noise power spectrum of the parvocellular LGN cell, 
(2) the correlation amongst nearby LGN cells, and (3) the noise 
power spectrum of the cortical cell. 

Spatial pooling 

As we have noted, cortical cells may have sensitivities much 
greater than that of their LGN inputs, as a consequence of spa- 
tial pooling (Sclar et a]., 1990). As a rule of thumb, the approx- 
imation in eqn. (29) shows that in the absence of cortical noise, 
plausible values of cortical cell bandwidth and essentially un- 
correlated LGN cells ( p  = 1, b = 1.47 octaves, p = 0.01 deg) 
lead to a relative sensitivity of cortex and LGN equal to 100 di- 
vided by the cell spatial frequency. Thus, a cortical cell at 1 cy- 
cle/deg will be 100 times as sensitive as its LGN inputs. 

It is interesting to consider the number of cells being pooled 
in this example. At 1 cycle/deg, p = 1 implies a circular pool- 
ing area of 1-deg radius, which when LGNs are spaced at 0.01 
deg implies roughly -K 100' = 31,415 LGN inputs! This number 
is undoubtedly an overestimate, since it does not take into ac- 
count the decline in LGN cell density with eccentricity but it 

nonetheless gives a sense of the massive amount of spatial pool- 
ing that must be involved. Tanaka (1985) gives an estimate of 
30 LGN cells driving one cortical cell, the number obtained by 
dividing the total cortical response by the contribution from one 
LGN cell. This assumes that all LGN inputs to the cortical cell 
have equal gain, which is unlikely, and for which Tanaka offers 
no evidence. It is also likely that his methods would select the 
LGN cells making the largest contribution to the cortical cell. 
Also, my estimate is only for the largest (lowest frequency) cor- 
tical cells, while the tuning of Tanaka's cells is unclear. Further- 
more, Tanaka's recordings were made in cat, and their relation 
to primate cortex is not known. 

Limitations of the analysis 

It is important to acknowledge some limitations of the analysis 
presented here. It is appropriate only for linear neurons, and 
cortical neurons are quite nonlinear. However simple cells, 
which we model here, generally behave linearly up to their out- 
put, which undergoes a half-wave rectification and possible 
point nonlinearity. Therefore the sensitivities we calculate must 
be interpreted as referring to quantities prior to these output 
nonlinearities. Some cortical cells also have no maintained dis- 
charge, in which case a single spike may be taken as the crite- 
rion. But then one has no direct means of estimating the 
internal noise of the cell. 

Another complication is the possible nonlinear adaptation 
of the cortical gain to the ambient contrast (Albrecht et al., 
1984; Heeger, 1991; Maddess et a]., 1988; Ohzawa & Free- 
man, 1985). However, this process, while quite powerful in the 
cat, may be much less evident in primates. It would not, at any 
rate, have much effect for the near-threshold stimuli employed 
in these measurements. 

A third limitation is the assumption of spatial homogeneity. 
This has two aspects: local disorder in spacing and size of re- 
ceptive fields, and systematic increase in size and spacing with 
eccentricity. The former is unlikely to have large effects in fo- 
veal vision. As to the latter, human and monkey cone diame- 
ter and spacing increase by about 70-90% over an eccentricity 
of 1 deg (Packer et a]., 1989; Samy & Hirsch, 1989). This inho- 
mogeneity will have its greatest effect at the lower frequencies. 
Lower frequency cells require larger receptive fields (assuming 
constant log bandwidth), and thus must pool over a larger, 
more inhomogeneous region, in which the mean spacing is be- 
low that at the fovea. Relative to the homogeneous prediction, 
then, inhomogeneous predictions would be somewhat lower at 
the low frequency end. It should be noted, however, that the 
more fundamental relationships between gain, noise, and con- 
trast sensitivity discussed here are not dependent upon homo- 
geneity, and inhomogeneous predictions could be derived from 
them. 

A fourth limitation concerns the relation between neural and 
psychophysical contrast sensitivity. Under certain assumptions 
(one cell, phase-uncertain ideal observer), neural contrast sen- 
sitivity is a direct predictor of psychophysical sensitivity. Exper- 
iments can be designed that increase the reasonableness of these 
assumptions, for example, by matching the size of the stimu- 
lus and the target cell. However, various departures from these 
assumptions can be imagined, such as use of information from 
many cells, phase knowledge, or less-than-ideal detection. Nev- 
ertheless, the direct prediction is an important benchmark, from 
which these departures are relatively minor amendments. 

Despite the cautions mentioned above, several rather strong 
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conclusions emerge. The first is that the rather insensitive par- 
vocellular neurons can feed very sensitive cortical cells, and can 
be  the basis for  very high psychophysical sensitivities. 

A more general conclusion is that relationships between sen- 
sitivities a t  various levels in the visual pathway depend strongly 
upon the level transfer function, the noise a t  each level, and cor- 
relations among nearby cells. The formulae discussed here al- 
low these factors t o  be  combined t o  generate meaningful 
predictions. 

A final observation is that the measurement of  contrast gain, 
noise, and  sensitivity of  neurons a t  various levels may  provide 
a powerful way of  dissecting the functional anatomy of  visual 
pathways, and o f  understanding of  the relationship between 
neural and psychophysical contrast sensitivity. 
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Appendix: Unit Gaussians 

The following is a scheme of notation for expressing Gaussians 
in space and frequency. The advantage of scaled unit Gaussians 
is that they convert manipulations of Gaussians, such as Fou- 
rier transformation, multiplication, convolution, and squaring, 
into simple algebraic manipulations of amplitudes and scales. 

Unit Gaussian 

We define a unit Gaussian as 

This form has the virtue that it has unit area, and that it is its 
own Fourier transform: 

Scaled unit Gaussian 

We introduce a scale parameter, a, and a scaled unit Gaussian, 

Note that the scaling is done in such a way as to preserve the 
area, rather than the peak value of the Gaussian. The scale pa- 
rameter is a measure of the dispersion of the Gaussian, and is 
proportional to other measures such as standard deviation and 
width, as shown below. The Fourier transform of the scaled 
Gaussian is 

Note that it is scaled in such a way as to preserve peak value, 
rather than area. This follows from the fact that the integral of 
a function is equal to the value of the transform at the origin, 
and we have fixed the area of the scaled Gaussian to be 1. An- 
other virtue of this parameterization is that if we regard a as a 
measure of width, then the width of the Fourier transform is 
l / a .  

Two dimensions 

A two-dimensional, radially symmetric scaled unit Gaussian can 
be written as 

Square. 

Integral. 

Energy. 

Width. Let w be the half-width at half-amplitude of the 
Gaussian. Then 

Let w' be the half-width in the frequency domain. Then 


